
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 19, PP. 557-565 (1975) 

Studies on Melt Spinning. V. Draw Resonance 
as a Limit Cycle 

HIDEAKI ISHIHARA, Katada Research Institute, Toyobo Co. Lld., 
Ohtsushi 520-02, Japan and SUSUMU KASE, Technical Division, 

Toyobo Co., Osaka 530, Japan 

Synopsis 

The exact wave form of draw resonance in isothermal spinning of Newtonian liquids 
was sought by solving numerically the simultaneous partial differential equations' of 
melt spinning in their original nonlinear form without recourse to  perturbation. When 
the drawdown ratio of spinning exceeded 20, solution of the equations became a limit 
cycle, a sustained oscillation having amplitude and period independent of initial condi- 
tions. As the draw down ratio was further increased, the amplitude of the limit cycle 
grew very rapidly, and the wave form became close to a pulse train predicting an extreme 
thinning of the thread at regular intervals along the thread. The above solution for 
Newtonian liquids agreed well with experiment with respect t o  oscillation period. 
Agreement, however, was poor in amplitude, indicating that possibly the amplitude of 
draw resonance is affected by deviations of polymer viscosity from Newtonian. 

INTRODUCTION 

In a previous study,' one of the authors discussed the stability of melt 
spinning using linearized perturbation equations derived from the partial 
differential equations of melt spinning introduced in the first of this study 
series2 For brevity, we call hereafter the latter of the above equations 
simply equations of melt spinning. 

The perturbation equations are quite useful in discussing the conditions of 
spinning instability or in approximately predicting the oscillation period, 
but they fail to simulate, the amplitude and wave form of draw resonance 
encountered in physical systems since the perturbation equations are linear- 
ized approximations meant just for small deviations from the steady sta.te 
values. Being linear, the perturbation equations, when unstable, give a 
solution growing without bound, whereas the physical draw resonance is a 
standing oscillation of fixed amplitude and period often encountered in non- 
linear systems. When a nonlinear differential equation has a solution in the 
form of a standing oscillation having amplitude and period independent of 
initial conditions, the solution is called a limit cycle.3 The equations of 
melt spinning are nonlinear and are supposedly capable of simulating the 
phenomenon of draw resonance. Therefore, their solution for an unstable 
spinning condition should become a limit cycle. 
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In the present study, on account of this, we solve numerically the equa- 
tions of melt spinning in their original nonlinear form to seek to obtain the 
exact theoretical wave form of draw resonance in the isothermal spinning of 
Newtonian liquids. Solutions are then compared with experiments. 

Although discussions are limited to isothermal spinning, results can at 
least qualitatively be applied to the nonisothermal case, since we found1 
that draw resonance can occur only when the spinning is carried out under 
approximately isothermal conditions: 

NUMERICAL COMPUTATION OF LIMIT CYCLE SOLUTIONS 

Equations of melt spinning under isothermal conditions take the,form 

aA a 
ar ax 
- + - (Av) = 0 

where r is time, x is distance from spinneret, A is cross-sectional area, u is 
velocity in the x direction, F is thread tension, and /3 is Trouton viscosity 
assumed constant under isothermal conditions (see Fig. 1). 

(i) fixed velocity vw, and cross-sec- 
tional area Am, near the spinneret, where subscript m denotes the value at 
the position of maximum diameter; (ii) fixed take-up speed, v,, where the 
subscript w denotes the value at the take-up point. 

Equations (1) and (2) are first converted into nondimensional form by 
defining the following variables : 

(3) 

(4) 

(5) 

(6) 

Boundary conditions applicable are: 

( = x/xw = nondimensional distance 

r* = .rvoo/x, = nondimensional distance time 

X = A / A m  = nondimensional distance thread cross-sectional area 

$ = v/vw = nondimensional distance thread velocity 

nondimensional distance tension (7) 

Fig. 1. Schematic diagram of water-quenched melt spinning. 
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Equations (1) and (2) now become 

- + * - =  ax bX - 5 .  
dr* bS (9) 

Steady-state solutions of eqs. (8) and (9), denoted by subscript 0, are 

*o = e (10) 

x0 = e-bt  (11.1 

b f  

where b is the natural logarithm of draw down ratio, +wl and is the only 
parameter in this system. For an easy visualization of solutions, dependent 
variables 9 and in eqs. (8) and (9) are converted into ratios V and W over 
the respective steady-state values rL0 and Xo: 

* = v*o (12) 

X = W b  (13) 

The dimensionless distance S, too, is replaced with the dimensionless 
flow-down time {* defined in eq. (14) below in order to  simplify mathe- 
matical expression: 

The dimensionless flow-down time {* is equivalent t o  the time the poly- 
mer takes under steady-state condition to  flow down from the position of 
maximum diameter t o  position { and made dimensionless by multiplying 

By substituting eqs. (12), (13), and (14) into eqs. (8) and (9), we get 
( v * l x w ) .  

bV b v = -  t 1  
W 1 - b{* - +  b{* 1 - b{* 

bW b - + - (VW) = 0. 
br* by* 

The value of {* at the take-up point is 

Equations (15) and (16) are then converted into difference equations using 
the backward difference scheme given below: 

v - Vl+l.j+l (18) 

w - W*+l,,+I (19) 
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Fig. 2. Procedure of numerical camputation. 

(22) 

where i and j are increment numbers, respectively, in the c* and the T* 

directions as shown in Figure 2. 

b 
- (VW) - (V*+lJ+l Wi+lJ+l - Vi,j+1 w*,j+l)lA 
be * 

Equations (15) and (16) reduce to  

Vi+i.j+: = (1 + RFa)/(FiF2 - 1) 

Wi+:,j+i = (FiF2 - 1)/(F2 + Fa) 

F1 = wi+:,j + vi,j+: wt,j+1 

(23 1 
(24) 

(25) 

where 

Referring to Figure 2, eqs. (23) through (27) enable the computation of 
the values of V and W at point 1 when V and W are known a t  points 
2 and 3. Computations, therefore, can proceed along the dotted lines 
in Figure 2. However, computations under each j value must be iterated 
by modifying the value of nondimensional tension [ using Newton's method' 
until the boundary condition at the take-up point is satisfied. 

A computer program having 71 FORTRAN statements has been devel- 
oped to execute the above computations. It took approximately 5 min on 
an IBM 370/155 computer to carry out the computations for one spinning 
condition when the number of mesh points as shown in Figure 2 were 100 (i) 
x 7000 ( j )  = 7 x 1 0 5 .  

DISCUSSION ON LIMIT CYCLE SOLUTIONS 

Computed solutions of eqs. (23) and (24) corresponding to five different 
b values, 2.0,3.0,3.5,4.0, and 4.5, and expressed in terms of nondimensional 
cross-sectional area W ,  a t  the take-up versus j are shown in Figures 3 (a) 
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Fig. 3. Computed thread thickness at take-up point vs. time increments j .  

through 3 (e). The value of A was {w*/lOO. This makes j = 100 cor- 
respond to {* = Cw* ,  or the time the polymer t.akes to  flow down from the 
spinneret to the take-up point under steady-state condition. 

Initial and boundary conditions used were : 

V = W = 1.0 = steady-state values 

V = W = 1.0 = steady-state values 

a t  T* = 0 (28) 

(29) 

a t  {* = Two* (30) 

where u( 
Equations (28) through (30) signify that the system was a t  steady state 

initially and a step increase of 0.1 u(T*) in take-up speed is exerted as an 
external disturbance. Because of this 10% increase in take-up speed, the 
solutions shown in Figure 3, in fact, correspond to effective log draw-down 
ratios of 2.095, 3.095, 3.595,4.095, and 4.595 rather than 2.0, 3.0, etc. 

a t  {* = 0 

V ,  = 1.0 + 0.1 U ( T * )  

) is the unit step function. 
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Fig. 4. Solution forb = 4.0 aa in Fig. 3(d) but under dXerent initial condition. 

Fig. 5. Proof of the existence of limit cycle. 

In  what follows are discussions on the curves shown in Figure 3. 
(i) When the log draw-down ratio, b, exceeds 3.0, the solution starts to  

settle to  a sustained oscillation. This is in agreement with the previous' 
perturbation analysis which showed that isothermal spinning becomes un- 
stable at b = 3.0. 

(ii) The sustained oscillations shown in Figure 3(b) through 3(e) are limit 
cycles. Shown in Figure 4 is a solution 
W ,  for b = 4.0 as in Figure 3(d) but starting from a different initial condi- 
tion, W = 1 + 43- and V ,  = 1 + 0.1 u(T*).  It is evident that the standing 
oscillation part of the curve in Figure 4 is identical in wave form t o  that in 
Figure 3(d). The standing oscillation is independent of initial condition, 
hence is a limit cycle. The existance of limit cycle can more clearly be 
visualized by plotting the above two solutions on a W,-versus-W, diagram 
as shown in Figure 5. @, is the time derivative of W,. The solution 
shown in Figure 3(d) starts a t  a point inside the closed path L in Figure 5, 
takes a divergent path, and eventually settles to  L, whereas the solution 
shown in Figure 4 converges to  L from outside. This establishes the 
existence of limit cycle L. 

(iii) As the value of b increases beyond 3.0, the amplitude of the limit 
cycle increases sharply and the minimum thread thickness quickly a p  
proaches zero, as shown graphically in Figure 6. 

(iv) When b is more than about 3.5, the limit cycle practically takes the 
form of a pulse train with most of the thread mass concentrated at the peaks. 

The proof for this is as follows. 
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Fig. 6. Maximum and minimum thread thickness vs. log draw-down ratio b. 

(v) In  a previous paper, ' the period of. linearized oscillation was expressed 
as a multiple vc of dimensionless flow-down time, (,*, and was given as a 
function of log draw-down ratio b as reproduced in Figure 7. The period 
vc* of limit cycle coincides with vc a t  the critical b value of b = 3.0 where the 
limit cycle starts to  appear. However, as shown in Figure 7, rlc* quickly 
deviates from vc as the amplitude of the limit cycle grows with increasing b. 

COMPARISON WITH EXPERIMENTS 
The draw resonance in water-quenched melt spinning of PET discussed 

in a previous paper' is reproduced in Figure 8. Spinning conditions rele- 
vant to the present study are: 

air gap, xu, = 2.0 cm 

log draw-down ratio, b = 4.33 

take-up velocity, v, = 500 cm/sec. (31) 
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Fig. 8. Draw resonance in water-quenched melt spinning of PET compared with corre- 
sponding theoretical curve for Newtonian liquids. 

The corresponding limit cycle solution was superposed on the experi- 
mental curve in Figure 8. The mean value of the theoretical curve in Fig- 
ure 8 is made to  coincide with that of the experimental curve. The dimen- 
sionless time T* for the theoretical curve was converted into thread length L 
using eq. (4) and the relation 

The theoretical oscillation period agrees fairly well with the experimental 
value. In  fact, the experimental value falls between the linearized predic- 
tion and the limit cycle prediction, as shown in Figure 7. This might be ex- 
pected, since the tws predictions correspond respectively to  very small and 
very large amplitudes and the experimental draw resonance has a medium 
amplitude. 

As far as the amplitude is concerned, however, there is a large discrepancy 
between limit cycle theory and experiment. This discrepancy most likely 
reflects the deviation of polymer rheology from that of Newtonian liquids. 
Since the limit cycle shown in Figure 8 is the “exact” solution of eqs. (1) and 
(2) for b = 4.33, it should show how Newtonian liquids behave under this 
spinning condition. Therefore, it is desirable to  introduce rheological 
equations such as the power law model or the Maxwell model into the right- 
hand side of eq. (1) so that experiments can better be simulated. It also 
leads to  the idea that the tensile rheology of polymers might be measured 
indirectly by observing the shape of draw resonance. 

Shown in Figure 9 is draw resonance under three different draw-down 
ratios observed in the water-quenched melt spinning of PP monofilament 
using the experimental setup shown in Figure 10. Since these experiments 
were not carried out under fully isothermal conditions, the curves cannot be 
compared with the theoretical values directly. Figure 9, however, clearly 
exhibits the theoretically predicted tendency that the wave form of draw 
resonance approaches a pulse train with increasing b. 
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Fig. 10. Water-quenched melt spinning of PP. 

CONCLUSIONS 
Equations of melt spinning in their original nonlinear form were found to 

yield limit cycle solutions clarifying the standing oscillation feature of the 
phenomenon of draw resonance. The amplitude of the limit cycle solution 
for isothermal Newtonian liquids, however, was much larger than the cor- 
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responding experimental value for PET yarn, suggesting that the amplitude 
of draw resonance may be quite sensitive to the tensile rheology of polymers. 
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